If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-4x-10=13
We move all terms to the left:
4x^2-4x-10-(13)=0
We add all the numbers together, and all the variables
4x^2-4x-23=0
a = 4; b = -4; c = -23;
Δ = b2-4ac
Δ = -42-4·4·(-23)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-8\sqrt{6}}{2*4}=\frac{4-8\sqrt{6}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+8\sqrt{6}}{2*4}=\frac{4+8\sqrt{6}}{8} $
| 14=-(x-9) | | 43+(4x+3)=90 | | 82x=-217 | | 2x+2x+1+31=180 | | 3(x-4)-6=5(x-3) | | 4x-38=-2+x | | 6+n5=-19 | | 4w-3w+6w-3=18 | | (10x8)=+(4x+5) | | 10+11y=30+y | | 10=35-5x | | f/4+6=9 | | 28=8^x | | 2/3(6a+9)=21.6 | | 9x-11=5x+51 | | 160-4x=120 | | 10x+10=65 | | x/15-8=-2 | | 3y^2-4y-3=0 | | -79-3n=9+2n | | x-(-13)=26 | | 3x4=x+28 | | –7t+8t−9t+–11=–19 | | -8-4v=5v+34 | | 3(3x-4)=8x-3 | | 4(x+8)-2x-10=8 | | 36/x=9/6 | | 5y-3=13y-67 | | 5z+7=9z-33 | | 18-3g=15 | | 6(x+4)=3x+18 | | 2x-5((-27/10+(12/5)*x)-2,5)=-9((-27/10)+(12x/5))+5,5 |